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A robust version of the Ordinary Least Squares accommodating the idea of weighting
the order statistics of the squared residuals (rather than directly the squares of residuals)
is recalled and its properties are studied. The existence of solution of the corresponding
extremal problem and the consistency under heteroscedasticity is proved.
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1. BASIC FRAMEWORK AND WEIGHTING THE ORDER STATISTICS

Let A denote the set of all positive integers, R the real line and RP the p-dimensional
Euclidean space. All vectors will be assumed to be the column ones and throughout
the paper, we assume that all r.v.’s are defined on a basic probability space (2, A, P).
For a sequence of (p + 1)-dimensional random variables {(X;,e;) }>2,, any n € N
and 3° € RP the linear regression model given as

P
K:X;60+€Z:ZX”ﬂ?+€Z, 221,2,,71 (1)
=1

will be considered. Further, for any 3 € R?  r;(8) = Y; — X;ﬁ denotes the ith
residual and 7“(2h) (8) stays for the hth order statistic among the squared residuals,
i.e. we have

iy (B) S iy (B) < -+ <1 (B). (2)

Without loss of generality we may assume that 3° = 0 (otherwise we should write

in what follows 3 — 3° instead of 3). For any matrix A = {aij }i2} j=1 denote by

||l Frobenius norm, i.e. />3, 37, aZ;. Finally, for any n € N let w; € [0, 1],
i=1,2,...,n be weights.

We are going to give a proof of consistency of the robust estimator of the regression
coefficients given in the next definition, see Visek [19], under heteroscedasticity of
error terms.
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Definition 1.1. The solution of the extremal problem

fAWSnw) _ aggerélgn wﬂ?i)(ﬁ) (3)
i=1

is called the Least Weighted Squares estimator (LWS).

Although the consistency was already proved (under homoscedasticity) in Visek
[20, 21] and Masicek [10], the proofs were very complicated (employing e. g. a sophis-
ticated modification of Prokhorov metric). Present way was opened by establishing
uniform convergence (uniform with respect to regression coefficients) of empirical
distribution functions of residuals (generally heteroscedastic, see Lemma A.7) to the
theoretical one and of similar result for regression combinations of explanatory vari-
ables (see Lemma A.6). These results are similar to the results which are usually
established in the theory of empirical processes but here we need the only assump-
tion, namely the independence of the r.v.’s in the sequence {(X;,e;) }2,. The
present result allows to start the studies concerning robustified White test (espe-
cially its power) and proposals of White-type estimator of covariance matrix of the
LWS-estimates of regression coeflicients. Such estimator will be resistant against
heteroscedasticity — similarly as the “classic” White estimate of covariance matrix
for OLS-estimates — and so it will allow to evaluate properly the significance of ex-
planatory variables (neglecting the influence of heteroscedasticity leads frequently to
overestimation of significance of explanatory variables, consequently to an overfitted
model and hence finally to generally (and unfortunately frequently) to less efficient
estimates of regression coefficients). Moreover, although the estimators in the over-
fitted model are generally unbiased, for the datasets which are not very large, the
etimators can attain quite misleading values.

First of all, let’s show that (3) has a solution and then briefly remind the reasons
for the definition.

Theorem 1.2. Let {(X;7 ei)/}g’il be a sequence of random variables. Then for any
n € N the solution of (3) always exists.

Proof. Fixanwg € Q, ng € N and put W = diag{w1,wa, . .., wy, }. Then consider
observations {(Y;(wo), X; (wo)) }7°, with Y;(wo) = X; (wo)B3°+ei(wo) and define ma-
trix X(CUO) :/ (X1 (WO), XQ(WO), ey Xno (wo))/ and vector Y(LUO) = (Yl(wo), }/2((.4]0), e

.y Yy, (wo)) . For a given permutation 7 of indices {1,2,...,n¢} denote Y (7, wp)
and X (m,wp) the vector and the matrix obtained as corresponding permutation of
coordinates of vector Y (wp) and of rows of matrix X (wg), respectively. For the data

(Y (m,wo), X (m,wp)) evaluate the Weighted Least Squares by (classical) formula
BOVES W) (1) = (X (o) - W - X (m,0)) - X (m0) - W - Y (i, w0)

(where we have assumed that X' (7, wg)- W - X (7, wp) is regular; if it doesn’t hold we
use pseudoinverze). Repeat it for all permutations. Then select that permutation,
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S&Y Tmin = Tmin (Wo), for which
no ’7 ~ 2
Zwi : (K:(W,Wo) — X, (m, wo) VIS M0 Wom) (wo)) (4)
i=1

is minimal. Then S(WES:m0.W:mmin) (40) is solution of (3) at the point wy because for
any other 7

S i (Yo 00) — X (o 100) VS0 W) (o))
'Lﬂ:ﬂl ,

< Y wi (Yl wo) — X (7,w0) SOVES T W) (ug)
=1 . ,

— Bienlngwl (Yi(ﬁ,wo) -~ X, (ﬁ,wo)ﬂ)

It means that B(LWS,ng,u)) (wo) _ B(WLS,no,W,muin)(wO).

Repeating this at first for all w € Q and secondly for all n € AN, we conclude the
proof. O

Remark 1.3. Let’s return to the fact that SIWSmw)(y) = FWLSm0.Wmuin) (y))
(which we found at the end of proof of Theorem 1.2). Moreover, let’s recall that
the estimate by means of Weighted Least Squares B(WLS’"O’W’”'"“‘)(W)
solutions of the normal equations

is one of the

X' (Maniny @) - W+ (¥ (Tanin, @) — X (Tmim, (W) B) = 0.

Then we conclude that SWS:mw) () is one of solutions of the same normal equa-
tions, written usually without stressing dependence on w as

X' (Tmin) - W - (Y (Toin) = X (onin) B) = 0. (5)
Remark 1.4. Putting for any n € A and for h € {1,2,...,n} wp=1and w; =0
for i # h, (3) yields the Least Median of Squares (Rousseeuw [11])

BEMSR) agg;;}jﬂ iy (B)-

Similarly, w; = 1, ¢ < h and w; = 0 for ¢ > h gives the Least Trimmed Squares
(Hampel et al. [5])

h
A(LTS,n,h) _ : 2
o = argmin 3 iy (6).
=1

Let’s summarize pros and cons of B(LMS*”’h) and B(LTSm’h). It will hint, what we
should require to hold for the weights w;’s.
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Fig. 1.

First of all, B(LMS’"’h) and B(LTS7”’h) are scale and regression equivariant and B(LWS’"’}’)

shares this property with them?!.

Let’s recall that for h = 5 + p—;l both B(LMS’”’h) as well as B(LTS’"J‘) have asymp-
totically breakdown point equal to 0.5 (see Rousseeuw, Leroy [12]). Nevertheless, as
the pictures (see Fig. 1) demonstrate the high breakdown point may cause high sen-
sitivity to a small shift of observation (for real data exhibiting the same phenomenon
see Hettmansperger, Sheather [6], together with Visek [16]). The sensitivity is due
to the fact that both estimators have the discontinuous “loss function”, i.e. that
the the weights w;’s are only either 0 or 1. Similarly, robust estimators with dis-
continuous “loss function” exhibit the (high) sensitivity with respect to the deletion
of point(s), see e.g. Visek [17, 18, 22, 23]. To remove it we should decrease the
influence the influential observations in a less steep way.

Moreover, it is known that BIMS:mh) g not \/n-consistent while B(LTS,n,h) pos-
sesses this property (Rousseeuw, Leroy [12]). It hints that probably the weights are
to be nonzero for more than one observation and possibly nonincreasing.

Taking into account previous considerations and assuming that the weights are
generated by a function w in the way w; = w (%), let’s put:

Conditions C1. The weight function w(u) is continuous, nonincreasing, w : [0, 1] —
[0,1] with w(0) = 1.

The form of definition of LWS as given in (3) is not suitable for considerations
on the consistency of the estimator. So, following Hajek and Siddk [4] for any

INotice that many robust estimators as e.g. M-estimators, need not necessarily to posses it.
Generally, to reach scale and regression equivariance for M-estimators, we have to studentize the
residuals by scale invariant and regression equivariant estimate of scale of error terms, see Bickel
[1] or Jureckovd, Sen [8]. However, to establish such an estimator is not a simple task, see Croux,
Rousseeuw [3], Jureckovd, Sen [8] or Visek [24]. Moreover, all of them are in fact based on a
preliminary robust scale- and the regression-equivariant estimator of the regression coefficients.
It implies that the (robust) estimators which need not require the studentization of residuals are
preferable in the applications. B(LWS’”’h) is one such possibility.
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1€ {1,2,...,n} let us put

m(B,i)=j€{l,2,....n} & Tf(ﬁ) = T(2])(/8) (6)

(notice that again w(8,i) = 7 (8,4,w), since it depends on X;(w)’s and e;(w)’s).
Then we have from (3)

BOWSn.w) _ arg min Z <J_1> 2,)(5):argmin i <7T(@;)_1> r2(B).

BER? =1
(7)

Now, returning to (5) and employing (6), we obtain normal equations in the form

Zn:’w(w(ﬁ;)_l) - X - (Y = XiB) =0. (8)

i=1

Further, for any 8 € RP and any n € A the empirical distribution of the absolute
value of residual will be denoted F B(n) (r). Tt means that, denoting the indicator of a
set A by I {A}, we have (remember we put 3° = 0)

F{ Zf{m | <r}=— Zl{m X;Bl<r}. (9)

Now, realize please, that having fixed 8 € RP and denoting |r;(8)| = a;(53), the
order statistics a(;)()’s and the order statistics of the squared residuals r%i)(ﬂ)’s
assign to given fix observation the same rank, i.e. if the squared residual of given
fix observation is on the fth position (say) in the sequence

7”(21)(ﬁ) < 7’(22)(5) < ~--7"(2n)(5)7 (10)
then the absolute value of residual of the same observation is in the sequence
am(B) < a@)(B) < -..awm)(B) (11)

also on the fth position. Now, let’s realize that the empirical distribution function
Fﬁ(n)(r) has at point a(r(g,:))(B) its 7(f,i)th jump and hence (notice the sharp
inequality in our definition of the empirical distribution function, see (9))

F§ o0 (8)) = FO(r@))) = T2 D (12)
(for 7(f3,1) see (6)) and so (8) can be written as
NEy.xa(8) =Y w (FS" (r(8))) X (Y - x;8) = 0. (13)

=1

The main idea of proving consistency of SLWSm:w) g to approximate F (|n( )
by a continuous distribution function — as given in Lemma A.7. We shall need for
it some assumptions.
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Conditions C2. The sequence { e;) }(:1 is sequence of independent p + 1-
dimensional random variables (r.v. s) dlstrlbuted according to distribution func-
tions (d.f.) Fx.,(z,r) = Fx(z) - F.,(r) where F,,(r) = F.(ro; ') with [Ee; = 0,
var (e;) = 02 and 0 < liminf; . 0; < limsup,_,., 0; < co. Moreover, F,(r) is abso-
lutely continuous with density f.(r) bounded by U.. Finally, there is ¢ > 1 so that
E || X1 ]]*? < oo (as Fx(x) doesn’t depend on i, the sequence {X;}5°, is sequence of
independent and identically distributed (i.i.d.) r.v.’s).

Remark 1.5. The assumption that the d.f. F.(r) is continuous is not only tech-
nical assumption. Possibility that the error terms in regression model are discrete
r.v.’s implies problems with treating response variable and it requires special consid-
erations — see chapters on logit or probit models or limited response variables e. g.
in Judge et. al. [7]. Absolute continuity is then a technical assumption. Without
the density, even bounded density, we should assume that F(r) is Lipschitz and it
would bring a more complicated form of all what follows.

Remark 1.6. Notice that there are constants 0 < s, < S, < co so that s, < g; <
S, for all i’s. Moreover, as the density of e; is given as fe(r - 0;1) . 0;1, there is a
constant f, < oo such that sup;car sup,.cp fe, () < fo.

2. ALL SOLUTIONS OF NORMAL EQUATIONS ARE BOUNDED

First of all, we need some auxiliary lemma. Prior to proving it, we have to enlarge
our notation. For any B € RP the distribution of the product f XX 8 = (X j3)?
will be denoted F{xg)2(u), i.e.

Fixopye(u) = P ((X’ 8)? < u) . (14)
The empirical distribution of the sequence of L.i.d. r.v.’s {(X}/) } "~ will be denoted
F((;’B)Z( ), so that
7 5N /
FG) s (u EZI{ (X8 <u}. (15)
j=1

Finally, for any A € RT and any a € R put

Yaa = sup Fixipy(a). (16)
lIBlI=A

Notice please that due to the fact that the surface of the ball {8 € RP, ||| = A} is
compact, there is 5, o € {8 € RP,||5|| = A} so that

'Y/\,a = F(X/B%a)2(a>. (17)
Moreover, for any 3 € RP denote 3 = 3 - 18]|7L. Then we have
Fixpe(u) = P((X]8)" <u)
(X18)* _ w u
= P =F _ 2(—=).
o < Tar = Feear )
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Then evidently

e = ’Yl,)% .
It means that we may without any restriction of generality consider only ;4. In
what follows there are defined some constants inside the proofs of assertions, lemmas
or theorems. They are assumed to be defined only inside the corresponding proof.
Now we can prove:

Lemma 2.1. Under Conditions C1 and C2 there is a > 0 and b € (0, 1) so that
a-(b—"4) w(b) >0 (18)
(for v1 4 see (16)).

Proof. Due to Condition C1 there is b € (0, 1) such that w(b) > 0. Fix one such b.
If for all @ > 0 we have 71 , > b, we have

liminf~y; 4 > b.
a—04

So, there is a sequence {ay},-, such that for all k =1,2,..., a5 > 0 and
lim a =0 and liminf vy 4, > 0.
k—o0 k—ro0

Then, due to the fact that for each 7, 4, there is 3, 4, such that
Y,a, = F(X/ﬂ%ak)Q (ak),
see (17), we have a sequence {3, 4, },o, such that

hkrgggf F(X,ﬁ'y,ak)2 (ar) > b.

Applying (again) the argument about the compactness of unit ball, we find finally
8* and a subsequence {B%akj }321 so that lim; B%akj = [* coordinatewise and
that

liminf F

ar.) > b.
j—oo (X/B%akj>2( k]) =

Applying Lema A.8 we conclude that
_ ! A%\ 2
0<b< Fyg(0) =P ((X B*)? < 0)

which is a contradiction. O

Lemma 2.2. Let Conditions C1 and C2 be fulfilled. Then for any € > 0 there is
6 >0, A>0 and n.n € N such that for any n > n. a

P ({w eQ: inf flﬂlﬂVEKX,n(ﬂ) > A}) >1—e.

Islz6  n

In other words, any sequence {B(LWS’"’“’)};?Zl of the solutions of the sequence of

normal equations INEz,,(BTWS™%)) =0, n = 1,2,... (see (13)) is bounded in
probability.
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Proof. Let us multiply (13) from the left by the transposition of a 8 € RP and
write it then as

n ! ! 1 n n !
= Z (Fma))) 8 X8 = = 3w (B (n(8))) eiXiB. (19)
i=1
First of all, we shall pay attention to the quadratic part of (19), i.e. to

*Z GRECHESSE (20)

and we’ll find a positive definite quadratic form which uniformly for 8 outside the
ball of diameter equal to 2 and with probability at least 1 — ¢ is the lower bound
of (20). This quadratic form is then for 8 € RP with enough large norm, say larger
then some 6 > 0, larger than the linear part of —%BIINEy’X’n(B).

Fix a > 0 and b € (0,1), existence of which was shown in Lemma 2.1 and denote
the set of all indices i = 1,2,...,n by I,. Further, for any 8 € RP denote the set
of indices for which Fﬁ(")(|r7(5)|) < b by I;(B8). Returning to (10) or (11), we easy
verify that the empirical d.f. overcomes b not later than at its [nb] + 1 jump, i.e.
number of order statistics in (11) at which the empirical d.f. is less or equal to b is
at least [n - b] (where [£] denotes the integer part of £). It means that

#1,(8) > [n-b] (21)

where # A stays for the number of elements of the set A. Realize please that whenever
index i € I(5), we have F(")(\n(ﬂ)\) < b which implies that for i € I,(8) we have
(for any 8 € RP)

w (F(rs(B)D) = w(®). (22)

Now, let us denote I,,(/3) the set of indices (among 1,2, ..., n) for which 8’ X; X! < a.
Finally, let us estimate #1I,(5) and #I,(8) and take into account only those terms
of (20) the indices of which are in I(5) \ I, (5). (There are some other positive terms
of (20), contribution of which will be neglected, since their weights are smaller than
w(b) or B'X,; XS is smaller than a.) Note that for the set I,(3) \ 1,(8) we have

#(Lo(B) \ 1a(B)) = #1(B) — #1a(B)- (23)
Now, let us fix € > 0, § > 0 and put
K= a- (b_’g,a) w(b) (24)

Then, according to Lemma 2.1, x > 0. Employing Lemma A.6 find n; € A so that
for all n > ni we have

BERP uER

K 9
P<{MEQ: sup sup [ F(3) () ~ Foxcrap (u)] < aw(b)}) ity
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and denote the corresponding set by BS). Recalling that, due to the fact how the
empirical distribution function is defined, we have

FO) @)= HEBXXiB<a} _ #1.(8)

(xp)2\®4) = n I

Then we conclude that (25) implies for any n > ny and w € BY

#1(0) = - FDa(0) < (Fiome(a) + ) < (ot s ) (260

(for yx,q see (16)). Notice that (26) holds only for {8 € RP, ||3|| = 1}. Let us recall
that we have denoted by I,(8) the number of indices (among 1,2,...,n) for which

B'X; X!8 < a. (26) then says that we have at most n - (fyLa + #(b)) such indices.
Consider w € B,(zl) and n > ni, and put

CulB) = {i € L F§" (ru(B))) < b and FX,X[8>a} = 1,(8) \ L(B).
Then (21) and (26) imply that the number of indices of the set C,,(3) is at least (see
(23))
#Cu(8) 2 #1(0)~#10(8) 2 nv=ne (it ) = (b= )

Now, we have for any n > nq, any w € BY and any ||8]| =1

’ ’ 1 ’ ’
o Z ( (Iri( )I)) BXiXif= > wb)B XX, B
i€Cr(B)
a-(b—"4) w(b)—k> k.
Consider now any 8 € RP,[|8]| =6 > 1 and put 3 = 6! - 3. Then
BXXi=05X X’B (27)
We have proved that for any n > nq, any w € B ) and any 3* € RP,||8*| =1

#105) < (a7 ) (28)

(see (26) and remember that I, (/5*) was defined as set of those indices from {1,2,...,n}
for which p'X;X[8 < a). Further, let’s recall that I,(5) was defined so that

Fﬁ(")(|rl(ﬁ)|) < b and hence
#1,(5) > [b-n] (29)
and for any ¢ € I,(3)

w (ES () = w(b). (30)
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Now, we have from (27), (28), (29) and (30)

1 n (n) ’ ’ 1 ’ 7
=3 w (B (r@)) S XX = - Y wb)s XiXp
i=1 1€y (B)
_ 1 2 ~/ ) o~ 1 2 ~1/ ) 1~
= S0 D> wOF XXz o0t T wh)F XX
i€ly(B) i€ly(8)—1a(B)
> 0%(a-(b—71.4) wb) —r) > 0% k. (31)

So, we have proved that for any n > n; and any w € BT(Ll) and
. Z (S 4ra(®))) 6/ X: X1 > 6% 5= |5 -

Now, we shall consider the second term in (19). Let e be a r.v. distributed according
to F.(u) and denote IE{|e|- || X1]|} = 7 and limsup, ,., o; = n. Then find ny € N

so that for any n > no there is B7(l2) so that P(BT(LQ)) >1—¢/2 and for any w € B,SQ)
we have (remember that w(r) € [0,1])

rlz zn:w (Fzgn)(ln(ﬁ)l)) eiX;ﬂ <=

=1

eX 8| <2rm- 8l (32)
i=1

Consider n > max{ny,na} and w € B,, = Bﬁll) ﬂBﬁf). It follows that P (B,) > 1—¢
and (31) and (32) imply that for any 8 € RP ||8]| > 1 and for x we have defined in
(24)

1
— B INEy.xa(8) = 18I - 5 = 27 - |18l
Then for any A > 0 there is a § > 1 such that for any 8 € RP,||3|| > 6 with
probability at least 1 — ¢ we have

1 /
_Eﬁ IANEY,X,n(ﬁ) > A. O

Prior to deriving consistency of B(LWS’"’W) we need some other results. For proving
them we have to strengthen the assumptions.

Conditions C1’. The weight function w(u) is continuous nonincreasing, w : [0, 1]
— [0,1] with w(0) = 1. Moreover, w is Lipschitz in absolute value, i.e. there is L
such that for any pair u1,us € [0,1] we have |w(u1) — w(ug)| < L - |ug — us|.

Further let’s put
— 1
Frpv) ==Y Fsi(v) (33)

where



Consistency of the least weighted squares under heteroscedasticity 11

Fpi(v) = P(|Yi = XjB| <v) = P(le; = XiB| <v) (34)
2

(remember that e;’s have different variances o7 and that we have assumed that

Y = 0).

Lemma 2.3. Let Conditions C1' and C2 be fulfilled. Then for anye >0, § € (0,1)
and ¢ > 0 there is ne5c € N so that for any n > n. 5. we have

1
PlqweQ : sup
I8l1<¢

- 2_: {w (B (r8))) B (e = X.8)
—8'E [w (Fas(r8))) Xi (e - X18)| }| < 8}) > 1-=

Proof. Throughout the proof please keep in mind that we have put
_ 1 &
Frpv) =— > Faa(v).
i=1

Denoting IE || X1||* = &, let us fix a positive , § € (0,1) and ¢ > 0. Recalling that
we have assumed that 3% = 0, we shall consider for 3 € RP, ||3|| < ¢ the normal
equations (13)

INEy x n(8) = % > (PP (r(@)) 8 XiX6 - % > w (FP(r(B)D) eiX,8.

i=1 i=1
(35)
Let us start (again) with the first term in (35) and put 7 = §/(20k¢? - L), for L
see Condition C1’. Due to Lemma A.7 we can find n; € N so that for any n > n;
there is a set BY such that P(Bﬁll)) >1—¢/10 and for any w € BY

sup sup Fﬁ(n)(r) - fnﬁ(r) <7D, (36)
BERP reR

Employing the law of large numbers, find ny > nq so that for any n > ng there is a
set Bg) such that P(B,SZ)) >1—¢/10 and for any w € Bg)

1 & 9
EZ||Xi|| < 2. (37)
=1

Since then for any n > no and any w € BT(LU N Br(Lz)

1 n N /
s 15w (F2r())) - w (Fara(@)} XX,
= i=1
1 n 5
< ELT(I);HXz”zSLT(l)Q/{: 10(2’
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we have for any n > ny and any w € Bg) N B,(f)

1 - N — , ,
s |35 {u (F()) - w (Fuslr(@)) } 5 XiX06) < g0 (9
<6 li=1
Employing Lemma A.8, find for A = W such 7(?) > 0 that for
T = {8 < s s ¢ o0 - 50 <) o0
we have
sup sup sup |F ;(r) — Fge ,;(r)| < A
(BM,B)eT (¢, 7)) €N TER
and hence also
sup sup Fn,ﬂ(l) (r) — fn,/;(z) (r)‘
(ﬁ<1>,6(2>)€7’((,r<2>) re€R
1 n
= sup sup Z Fgay.i(r) — = Z Fy.a(r)| < A (40)
(BW,B@)eT(¢,r2)) TER n ni4

Let’s recall that we have restricted ourselves on ||8|| < ¢. Then due to (37), (39) and
(40) for any n > ng and any w € By(ll) N B7(12)

L ap ‘Z{w(fnﬁ@)(h“i(ﬁ@)ﬂ))

(B ,B@)ET(¢,r2)
—w(F, o (Iri(82))) B X:X[ 52|

<0

- (41)

< LA ZHX I” <
(notice that the in the previous inequality the subindices of the d.f.’s are §(!) and
B® but the arguments are at the same point 5(2)). Further denote v = IE || X,]|*¢,
72 = IE||X,| and applying the law of large numbers find ns > ny so that for any

n > ng there is a set BY such that P(B®) > 1—¢/10 and for any w € BY we
have

1 — 5 1 —
=1 X7 < 29 d =) IX) < 29@.
K< TS <2
Finally, let us recall that w(r) € [0,1], so that for any pair r;,r3 € R we have
|w(r1) —w(rz)| <1 and hence for any ¢’ > 1

| () = w(rs)|” < fw(ry) = w(rs)]. (42)

Let ¢’ be such that _; =1 (for ¢ see Conditions C2). Then select some

’ -1
a
7@ ¢ [ 0,mind r®,5- (23q/+q fo L [7(1)} R .@q)
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(for f, see Remark 1.6, for L Conditions C1’) and put
76 ={[p0 s o] < 5 -0 <}

Then (remember that sup;cpr sup,cp fe; (1) < f», see Remark 1.6) for any n > ns
and any w € B N BR) N BG)

> w (Fr o0 (3(82))

1
sup —
(BW p@)eT(¢,r®) ™ i 21
~w (Fo s (m(BD)| < L+ fo - 7@ - 101 (43)

(For a sake of space write in a few next lines w,, g (4, £®?) instead of
w(Fn,ﬁ<1)(|ri(b’(2))|)).) Employing Hélder’s inequality we arrive at (again for any
n > n3 and any w € B N B@) N BO))

a0 657 50 157 X,
(BMD,B@)eT(¢(,7®)

1
a7

: (B, ﬁ(;)ueTcrw {[ Z|w"5(” (i, 89) = wy g (i, V)| ]
: [lzn])('.g(z)qu}
n’i 1 i
1
) y ]
) (,8<1>,6<2§;leT(<T<3>){[ Z|wn5<1> BY) = wp g (4,8 )|}
1
[ Z I8 12}
S R {9 S B

(50) BT (C o)
1
s - 129 ¢
¢ [nZquu |}
1 1
< s {gF [ ZHX 1"
)

(BD,BENET((r®

1
PY

(23 i) )

(44)

1 1
7 7

PR 3 5
< LT EON @] ) <
)

where the step from the fourth to fifth line used (43). Along similar lines we derive

1
sup —
(80,8@)eT(Cr®)

(P (i) {[2] x5
=1

- 50 xxis0 < (15)
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Finally, utilizing Lemma A.9 find 7(¥ € (0, min {6/10,7(3)}) so that for any pair
B BChR 1BV < ¢, 1B < ¢, 18D = P < ™), we have uniformly in
i € N and uniformly in n € N

‘[ﬂ(l)]lE [wn,ﬂ(l)(iaﬂ(l))Xi <€z‘ — X;,B(l))}
18D B [w, peo (i, 82) X (e = X,82)) || < % (46)

where again w,, 5 (i, 3”)) was written instead of w (Fnﬁ(@) (|ri(ﬁ(5))|)). Now find a

system of open balls of type B(3,7®)) covering the p-dimensional ball with center at
zero and radius ¢, i.e. covering B(¢) = {f € R? : ||8|| < ¢}. Due to the compactness
of B(¢) there is a subsystem of balls covering B(¢) which has finite number of balls,

say K((), and denote this system by {B(,B(j), 7(4))}§(:(?. Utilizing the law of large

numbers find for any j € {1,2,...,K(()} some nf € N so that for all n > n} the
set

n

> {wn,mﬂ(i,ﬁm)XiXé

=1

B [un 0 (. NXX] Y < gz} 4D

nj

1
BY = {wEQ:
n

has probability at least 1 — 10]‘2(0 Finally put ngg,g = max{ns,ni,ni,... ,n}(c)}
and B, = B" n B nBY n K(O BS;-). We have P(B,) > 1— 5. Since for any

B € RP,||B]| < ( thereis j € {1 2 .., K(¢)} so that |3 — Y| < 7, taking into
account (38), (40), (41), (44), (45), (46) and (47) we have for any w € B,, and any
n> n;(;’c

1
sup —
I8lI<¢ ™

ﬂ'i{w (Fg(”)(|m(5)|))XX JE[ ( ws(Iri(B )|))Xixg}}g|<g_
- (48)

Now, we shall consider the second term in (35). Along similar lines as in the first

part of the proof, we can find n(2) € N so that for any n > ni g’c there is C), so

that P(C,,) > 1 —&/2 and for any w € C,, we have
- n , — , 5
@‘ﬁ%i > {w (B (n®)) eixiB = B [w (Fusr(B))) eiX;8] }| < 5. (49)
= =1

Put n. 5, = max {”Sg,o nizgc} Then for any n > n. 5 we have P(B,NC,) > 1—¢

and taking into account (48) and (49), we conclude the proof. O

Similarly as in other situations when estimating (identifying) parameters of a model
we need some identification condition. Prior to give it, let us prove:
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Lemma 2.4. Let Conditions C2 hold and moreover 1 37" | |1 — o] = 0. Finally,
let e be a r.v. distributed according to Fe(v) and for any 8 € RP denote F(v) =
P(le — X{8| <v). Then for any A >0

lim sup  sup |F,5(v) — Fﬁ(v)‘ =0. (50)
n—oo —oo<v<oo ||B]|<A

Proof. First of all, notice please that P(e; < v) = P(eo; < v). We have to show
that

V(e > 0) I(n. € N) V(n > ne) : sup sup ‘an(v) — Fg(v)| <e.

—oo<u<oo [|]|<A

So, let’s fix an € > 0 and recall that

_ 1 &
Fop(v) = >~ Faalv),
i=1

Fya(v) = P (les — X1B| < v) = / dFy () o, (r)dr

{—v<r—az’'B<v}

:/ / fe(rojl)ojldr dFx(x) (51)
rERP {—v+a'B<r<v+az’'B}

Fg(v) = / dFx (x) fe(r)dr
{—v<r—az’'B<v}

:L/ {/’ ﬁxﬂdr}dﬁktw. (52)
zeRr | J{—v+a'B<r<v+a’B}

Let us put for any ¢ > 0 Fg,(v) = P(lec — X{f5| < v). Then due to absolute
continuity of Fe(v), we have

and

Fs.5(v) = P(lec—X|8|<v) = / / fe(ro Yo tdr p dFx ()
rERP {—v+a'B<r<v+az’B}

(53)
is continuous and hence, for any S € RP and any o > 0, there is vg , > 0 so that

Fpo(vg0e) =1~ (54)

| ™

Put
Uy o = SUD SUp  Ug,ge- (55)
IBISX so<0<So
Generally we can have v} . = oo. But, taking into account that {[|3|| < A} x [s5, 5]
is compact, using standard arguments we find (8y,04) € {||8|] < A} X [$5,55] s0
that

1-. (56)

FBu sOu (v’z,a)
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Hence 0 < v;; . < oo and for any 8 € {[|3]| <A} and any i =1,2,...

L= = Fp (030 < Fpalvy,). (57)

Finally, find v} do that Fs(v}) = 1— §, put v, = max {v} _,v}} and keep in mind

€
that F;(0) =0foralli =1,2,...as Well as Fg(0) = 0. Then for any 8 € {||5]| < A},
any n=1,2,... and any v € (—00, 0] U [vy,¢, 00)

‘Fw(v) f Flg(v)’ <e. (58)

Now, employing substitution y = r - g;, we obtain from (51)

Fgi(v) = /xeRp {/{'”if/5<y<”ti/5} fe(y)dy} dFx ().

b; d;
|P(le — X18] <v) — Fz,:(v)| < fo /GRP {/ dr+/. dr}dFX(z)

where a; = min{%ﬁxl’g, —v+a'B}, b = max{%f/ﬁ, —v+2'8}, ¢; = min{ U':f/ﬁ,er
'} and d; = max{%,v + 2’8}. It means that |ai — bi| <|lv+a'8|- U% - 1‘ <
|U+$/ﬁ| . ‘1

So

Then

—o;]. It gives

|1—0’i‘

g

1
[P (le = X1B] <v) = Fpi(v)| < 2:fo v+ IEXiﬁ-’ <2fo v+ EXiB|-

Then

T Vye + AE|| X1 ] 1
sup  sup [Fp(v) — Fs(v)] < 2- f, 102 ” [l ZH
—oo<u<oo 5]

and the proof follows. O

Lemma 2.5. Let Conditions C1' and C2 be fulfilled. Let again e be a r.v. distributed
according to F.(v) and denote for any € RP Fg(v) = P(le — X{8| < v) and
r(8) = e — X{B. Finally, let lim, o =~ > 7" 0; = 1. Then for any X\ > 0

lim sup { ZIE[ ( np(lri(B8 )|))Xz (ei—X;ﬁ)}

nree HBII</\
E [w (Fa(lr(®)) X1 (e - X18)] } =o.
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Proof employs Lemma 2.4 and similar technical steps as the proof of Lemma
2.3. ]

Corollary 2.6. Let Conditions C1’ and C2 be fulfilled. Moreover, letlim;_, o % Z?:l o;
= 1. Then for any e >0, 6 € (0,1) and ¢ > 0 there is n.5c € N so that for any
n > ne.s¢ we have

P weQ : sup
81<¢

5 [w(Fa(r(8))) X1 (e = X,8)]| < }) >1-=.

%iw (F (8 6 X (e - X18)

1=1

Proof follows from Lemma 2.3 and 2.5. O

Conditions C3. There is the only solution of
B [w (Fa(Ir(8)) X, (e = X,6) | =0 (59)

namely 8% = 0 (the equation (59) is assumed as a vector equation in 3 € RP).
Moreover lim,, oo % St o= 1

Remark 2.7. For w(u) =1, i.e. for the (Ordinary) Least Squares, (59) is fulfilled
as the normal equations have the only solution, namely the orthogonal projection
of Y = (Y1,Ys,...,Y,) into the linear envelope of the columns of matrix X =
(X1, Xoy .., X))

Theorem 2.8. Let Conditions C1’, C2 and C3 be fulfilled. Then any sequence
{pIwWs,n, w)}7 > | of the solutions of sequence of normal equations IN Ey, x , (BIWSmw))
=0,n=1,2,..., is weakly consistent.

Proof. To prove the consistency of {ﬂ (LWS,n,w)1o0 | e have to show that for any
e >0 and § > 0 there is n. s € N such that for all n > n. 5

oen o -sle)ore @

So fix &1 > 0 and §; > 0 and recall that INEy x,(3) = >, w(Fﬁ(n)(|7“i(ﬁ)|)) .
According to Lemma 2.2 there are Ay > 0 and 6, so that for &1 there is na, ., € N
so that for any n > na, ¢,

P<{weQ: inf —BJNEYXn(ﬁ)>A1})>1—€21 (61)

1BI=6. n

(denote the corresponding set by B,,). It means that for all n > na, ., all solutions
61

of the normal equations IN Ey x ,,(8) = 0 with probability at least 1 — & are inside
the ball B(0,6;).
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Further, consider the compact set C(d1,601) = {8 € RP : §; < ||B|| < 01} and find

rowon =, it {=8"B[wEr@)) X (e - x,8)|}.

BeC(81,601)

Assume that 7¢(s, 9,) = 0. Due to compactness of C(d1,01), there is a {Bi},—, C
C(01, 61) such that

lim BB [w (Fs(Ir(B) X1 (e = X18) | = =7c(s1,0,)-

Also due to compactness of C(1,6;), there is a 3 € C(01,601) and a subsequence
{Bkj }]Oil such that
j—oo Y

(where the convergence is assumed coordinatewise) and due to the continuity of

BB [w(Fs(r(8)) X1 (e - X,5)]

(see Lemma A.10) we have
— B [w (Fs(r(B)) X1 (e = X1B) | = 7c,0) = 0. (62)

Then, Condition C3 implies that }70(51,91)} #0.

lrceron] Ay

T S } and utilizing Corollary 2.6 we may find for €1, d1,

Now, put A = min {

01 and A such ne, 5,6,,4 € N that ne, s,,6,,a > ne, 56, and for any n > ne, 5, 6,4
there is a set D,, (with P(D,) > 1 — §) such that for any w € D,

sup
I B11<61

~8'E [w (F(lr(®)) X1 (e - X18)]| < A (63)

LS (B 1r(8)) 8 X, (e~ X06)

i=1

But (61) and (63) imply that for any 8 € RP,||8|| = 61 E[w(EFs(jr(8)]))X1(e; —
X;5)] > A. If then Tc(s,,0,) < 0 there would be a solution of equation (59) inside
the compact C(d1,01) = {8 € RP : 61 < [|f]| < 601}. Hence 7¢(5,,9,) > 0 (and hence
also A > 0) and for any n > n., 5, 0, o and any w € B, N D,, we have

1.
inf ——B8 INEy x n(8) > A. 64
ant, —B INEy,xn(6) (64)

Clearly, P (B, N D,) > 1 — ¢;. But it means that all solutions of normal equations
(13) are inside the ball of radius §; with probability at least 1 — 1, i.e. in other
words, fIWS:7w) {5 weakly consistent. a
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3. CONCLUDING REMARKS

As we have already said, the results allow to establish the robustified version of
covariance matrix of the estimates by LWS resistant to heteroscadasticity (as a
generalization of White estimator of this matrix for OLS) which in turn enable us
to make right conclusion about significance of explanatory variables. Empolying
them, we can also proceed in study of robustified versions of diagnostic tools and
sensitivity characteristics for LWS? analogous to the tools and characteristics used
by classical econometrics for the OLS.

The results were derived — due to the fact that we assumed the linear regression
framework — by simple methods under weak assumptions, usually imposed on corre-
sponding entities in the regression framework. Moreover a brief discussion included
them into up to now obtained results on robust regression. Of course, strengthening
a bit assumptions would allow to employ results by Vaart, Welner [15] or Koul [9]
on empirical processes. Our approach may appear more suitable as the forthcom-
ing research will assume further modifications of the basic method of LWS — in the
sense in which econometrics developed a lot of modifications of OLS for regression
model for variety of (economic) types of data (e.g. ARCH model) and (economic)
frameworks (e.g. errors-in-variables model, limited response variable, etc.).

4. APPENDIX

We need to recall some (general) results.

Lemma A.1. (Stépan [13], page 420, VII.2.8) Let a and b be positive numbers.
Further let £ be a random variable such that P(§ = —a) =7 and P((=b)=1—=
(for a m € (0,1)) and IE¢ = 0. Moreover let 7 be the time for the Wiener process
W (s) to exit the interval (—a,b). Then

§=p W(7)

“

where “=p” denotes the equality of distributions of the corresponding random vari-
ables. Moreover, IET = a - b = var¢.

Remark A.2. Since the book by Stépan [13] is in Czech language we refer also to
Breiman [2] where however this assertion is not isolated. Nevertheless, the assertion
can be found directly in the first lines of the proof of Proposition 13.7 (page 277) of
Breiman’s book. (See also Theorem 13.6 on the page 276.) The next assertion can
be found, in a bit modified form also in Breiman’s book, Proposition 12.20 (page
258).

Lemma A.3. (Stépan [13], page 409, VIL.1.6) Let a and b be positive numbers.
Then

P< Or;ltaécb |W ()| > a> <2-P(]W(b)|>a).

2Some of these studies will require, of course, to derive asymptotic representation (and possibly
asymptotic normality) of LWS.
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Definition A.4. Let S be a subset of a separable metric space. The stochastic
process V = (V(s), s € S) is called separable if there is a countable dense subset
T C S (i.e. T is countable and dense in S) such that for any (w,s) € Q x S there is
a sequence such that

sn €T, lim s,=s and lim V(w,s,) =V (w,s).
n—oo n—oo

Lemma A.5. (Stépan [13], page 85, 1.10.4) Let V = (V(s), s € S) be a separable
stochastic process defined on the probability space (2, .4, P). Moreover, let G C S
be open and denote by k(G) the set of all finite subsets of G. Then for any close set
K C RP we have

{weQ:V(s)eK,seG}e A

and

P({we:V(s) EK,SEG})zjeiil(fG)P({wEQ:V(s) eK,seJ}).

Proof. Since the book by Stépén is in Czech language and the proof is short, we
will give it. Let T be countable dense subset of S. Then we have

{weQ:V(s)eK,seG={weQ:V(s) e K,sc GNT}
and
PlweN:V(s) e K,s€G}) gjeig(fG)P({weQ:V(s) € K,seJ})
< inf P{H{weQ:V(s)eK,seJ})=P{H{weN:V(s)e K,secGNS})

JER(GNS)
P{weN:V(s)e K,seGY}). O

Let’s recall that we have denoted in (14) the d.f. of (X{8)? by Fx/g)2(u) and in
(15) the corresponding empirical d.f. by F((;),ﬁ)g(u), i.e.

gy (u) = :LE_;I {(Xiﬁ)2 < u} : (A.65)

Lemma A.6. Let the Conditions C2 hold. For any & > 0 there is a constant K.
and n. € N so that for all n > n,

P ({w €Q: sup sup Vn F((;)/ﬁ)2(u) - F(X/ﬁ)z(u)’ < KE}> >1—¢e. (A.66)
veERt BERP

Proof. Fixe >0 and put K, = \/§+ 1 together with

bi(u, B) = I {w € (X8 < u} . (A.67)
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Further put

and denote

Then {& (u, B)};2,, for any u € R™ and any 8 € RP, is a sequence of independently
distributed r.v.’s. Finally, (A.65), (A.67) and (A.69) yield

7251 U 5 (X’ ( )_F(X’B)Q(u)7

i.e.
(uvﬁ ‘ F(;)/ﬂ)z _F(X/ﬁ)2(u) .
Moreover
P(g’i(ua 5) =1- Trl(umﬁ)) = Tri(uvﬂ)
and

P (&i(u, B) = —mi(u, B)) = 1 — mi(u, B).

Now, we are going to employ Lemma A.l. We have already mentioned that
{&(u, 8)}2, is a sequence of independently distributed r.v.’s. Let us denote by
{Wi(s)};2, the sequence of independent Wiener processes (we may assume e. g. that
each of them is defined on “an own probability space”, say {(Q, A;, P;)};—, and then
consider the product space (2,4, P) in the same way as it is done in the proof of
Daniell-Kolmogorov theorem, see e.g. Tucker [14] and let us define 7;(u, 5) to be
the time for the Wiener process W;(s) to exit the interval (—m;(u,8),1 — m;(u, 8))
(please keep in mind that 7;(u, 8) ist.v., i.e. 7;(u, 8) = 7 (u, B, w)). Then & (u, B) =p
W;(7;(u, 8)) and hence for any 8 € RP

n

nié Zfl(ua 6) =D 77/7% Z Wz(’ﬁ(u,ﬂ)) =D Wl <n1 ZTAU,ﬂ)) (A?O)
i=1 i=1 i=1

where the last equality follows from the properties of the Wiener process. Further,
let us define U; to be the time for the Wiener process W;(s) to exit interval (—1,1).
Due to the fact that for all i = 1,2,...,n for any u € R" and any 8 € RP

mi(u,B) <1 and 1—m;(u, ) <1, e (—mi(u,B)),1—mi(u,p)) C(-1,1),
we conclude that for any u € RT, any 8 € RP and any w € Q
7i(u, B) < U;

and hence (again for any w € Q)

nt EH:TZ (u,B) <n~* Z U;. (A.71)
i=1
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Of course, {U;};, is the sequence of i.i.d r.v.’s and due to Lemma A.1 we have

FU; =1,
so, employing the law of large numbers, we can find n; so that for all n > n; and
for
Bn:{weﬂ : nlei§2}
i=1
we have -
P(B,)>1- 3 (A.72)

Let us consider n > n; and a fix wg € B,, and let us realize that for any v € RT and
any 8 € RP the left hand side of (A.71),i.e. n™' >0 7(u, ) =n~t Y0 7(u, B,wo),
is not larger than n=* Y"1, U; = n= '3 Ui(wo) € [0,2]. So for our fix wy, we
have

n n
{tER ct=n"1 ZTi(v,B,wo),vERJr,ﬁeRp} C {teR c0<t<n7? ZUi(wo)} .
i=1 i=1
It means that

sup sup W (n‘l ZTi(U767WO)> < sup W1 (t,wo)|.  (A.73)

veERt BERP i—1 0<t<n=1 3" | U;i(wo)

So, we arrived at: We have two processes which are equivalent in distribution, i.e.
n n
> &, Bw) =p Wi (n—1 Zn(u,ﬁ,w)
i=1 i=1

with the same index sets, u € R, 3 € RP (see (A.70)), both of them are separable.
Then employing Lemma A.5, we obtain

Z&i(uvﬁﬂ*@)

i=1

_1
n~2 sup sup
u€RtT BERP

=p sup sup
u€Rt BERP

Wl <n_l ZTi(ua 5;‘*}0)) ‘

i=1

and due to (A.73)

< sup [Wh (t,wo)] -
0<t<n=1 370, U;(wo)

> " &i(u, B,wo)

i=1

_1
n~2 sup sup
u€Rt BERP

In other words, for any n > n; and any w € B,

i=1

< sup |[W1 (2)]. (A.74)
0<t<n =1 0, Us

1
n~Z sup sup
u€R*T BERP
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Further, employing (A.74), we arrive at
Pllweq :n: sup sup Zfzuﬁ
u€R*+ BERP
n
1
weEN:n" 2 sup sup Zfluﬁ > K wEQ:n_lei>2
ueRt BERP i=1

+P ({w sup |W1(t)|>K}ﬂ{w€Q : nle¢§2}>
0§t§7r1 S U i=1

< we:n 1ZU >2}>+P({WEQ: sup |W1(t)|>K}>. (A.75)

0<t<2
Now, utilizing Lemma A.3, we obtain

i=1

P ( sup |Wa(t)] > K) <2.P(Wy(2)| > K). (A.76)

0<t<2

Further, recalling the fact that var {W(2)} = 2 and using Chebyshev’s inequality,
we arrive at

1 5
. <4. — = —, .
2-P((W1(2)] > K) <4 %25 (A.TT)
Finally, (A.72), (A.75), (A.76) and (A.77) imply
P (né sup Zfi(u,ﬂ) > K) <e
uERY, BERP |,
which concludes the proof. ]

Let’s recall that we have denoted by Fﬁ(n)(v) the empirical d.f. of error terms e;’s,
i.e.

Fy (v ZI{|62 X8| < v}

and that we have put

n

Frup(0) = 13" Faalo)

(see (33)) where
Fpi(v) = P(|Y; = XiB| <v) = P(le; — X; | <v).

Lemma A.7. Let the Conditions C2 hold. For any € > 0 there is a constant K.
and n. € N so that for all n > n.

P ({wEQ sup sup vn |F ( )—fnwg(ﬂ)‘ <K5}> >1-—e.

veERT BERP
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For a Proof of the lemma see Visek [25] (the proof runs along similar lines as the
proof of the previous lemma).

Lemma A.8. Under Conditions C2 the distribution functions Fj ;(r) and F{ x/ g2 (r)
are, uniformly in ¢ = 1,2,... and in » € R, uniformly continuous in 3, i.e. for any
§ > 0 thereis ¢ € (0,1) so that for any pair 5(V) and 3®) such that Hﬁ(l) — ﬁ(2)H <
we have

sup sup |F,3(1>,i(r) - F5<2),z‘(7")| <é

tEN TER
and

Elelg F(X/6(1)>2<T) — F(X/,@<2>)2(r)‘ <.

Proof. Let us recall that (see (34))

Fgi(r)= P(ei —X;B‘ < r) = /I{‘s—x/ﬁ’ < r}dFx.,(x,s)

and that (under Conditions C2) there is f, < 0o so that sup;cn sUp,cp fe; (1) < fo-
Then

sup sup |Fﬂ(1>,i(r) — Fﬁ(z)’i(r)’

ieEN reR
< supsup / |[{ls = 28D <} = I{ls = '8 < r}| dFx .. (@, 5)
i€EN reR
= sup sup/ }I{|s - x/5(1)| <r}—H{|s — 2 BP| < r}| fo,(s)ds dFx (z).
i€EN reR
Further
/\f{\s —a' B0 < v} = 1{ls =28 <r}| f.(s)as
max{—r+a:/,6(1),—r—i—;z/,B(z)} max{r+z/,8(1),'r+x/5(2>}
< | fulsds+ [ foi(s)ds
min{—r-‘rm/ﬁ(l) ,—r+z/,6’(2)} min{r-l—z/,@(l),r-i-x'ﬁ(?)}
< 2-f, |z WM _x’5(2)’.
Hence

Sup sup |FB(1)’Z-(7") — F5<2)’i(7“)| <2-f, / ‘xlﬁ(l) — 33/,8(2)‘ fx(z)dx
i€EN reR

< 2 f B IX 80 - 5.
So, for any § > 0, putting { = %5-f0_1-]E_1 | X1, for any gV, 3(2) € RP, Hﬁ(l) — B(Q)H
< ¢ we have

sup ‘F5<1)7Z-(7") - F3(2),i(7“)| <.
reR

The proof of the second part of the lemma runs along similar lines. |
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Lemma A.9. Let Conditions C1 and C2 hold. Then for any positive ¢
B E [w(Fupllri(8))) Xi (e - X15)]

is uniformly in 7 = 1,2, ... and uniformly in n = 1,2, ... uniformly continuous in 3

on B={B¢€RF:|B]l <(}.

Proof. Fix a positive ¢ and € and for the sake of space write again in a few next
lines wn’ﬁ(n(i,ﬁg)) instead of w (fnﬁ(u(\ri(ﬁ@))b). We have to show that then

there is d. ¢ > 0 such that for any pair of B, 32 such that HB(UH <, Hﬁ(2)H <(
and ||ﬁ(1) — ﬂ(z)H < 0,¢c we have for all § =1,2,... and for alln =1,2,...

’ [5(1)}/ E {wnﬁ(l)(i,ﬁ(l))Xi (ei -~ X;,B(l))}

B [B@)} E [wn,gm (i, B)X; (61' - X;ﬂ(Q))} ‘ Se.

Firstly consider

sup sup ‘ [ﬂ(l)} Bw,, g (i, BINX; - e; — [5(2)} FEw,, e (i, B2 X; - e;] (A.78)
neN ieN
< sup sup [ 80 = 5| - B, o i, 50) 1 X4] - e (A.79)
neN ieN
+ sup sup B - 1w, 50 (7, 80) = w, sou i, 82)]| - |1 Xl - fes] (A.80)
neN ieN
+ sup sup B - 1w, 50 (1, 82) = w, geo i, B2)| - Xl - fes] (A.81)
neN ieN

Denoting 71 = IF||X1|| < oo and finding A, = sup;cp IF |e;] < oo, put §; =
e 7' A1, Then for any pair H,B(l) — ﬂ(Q)H < 01 (A.79) is less than ge. Putting
by =2e-( 72 - AZY LT foU (for f, see Remark 1.6), we have also for any
pair ||B(1) — 5(2)” < 02 (A.80) is less than %z—:. Finally, utilizing Lemma A.8 find d3
so that for any pair HB(U —_ye H < 63 we have

sup sup ’Fﬁ(l),i(r) - Fﬁ@)@(ﬂ‘ < —e-¢7%- 7'1_1 'Ae_1 LT

ieEN reR

Then for any pair || — 8@ | < &3 (A.81) is also less than Ze. Finally, (A.79),
(A.80) and (A.81) imply that for any pair |3 — 8®)|| < min {61,02,d3} (A.78) is
less that %8. The rest of proof employs the same ideas. O

| =

Lemma A.10. Let Conditions C1 and C2 hold. Let e be ar.v. distributed according
to Fe(v) and denote for any 8 € RP F(v) = P(le — X{8] < v) and r(8) = e —
X1 3. Then for any positive ¢

BE |w(Fs(Ir(8)) X1 (e - X,5)]

is uniformly continuous in 8 on B = {f € RP : ||| < (}.
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Proof runs along similar lines as the proof of the previous lemma. |

Lemma A.11. Let Conditions C1 hold. Then for any € > 0 and § € (0,1) there is
¢ >0 and n. s € N so that for all n > n. s

Pl weN:sup sup ’Fﬁ(?l)) (r) — Fﬂ(g)) (r)) <o >1-—e. (A.82)
reER ||g<1)_ﬁ(2)H<g

Proof. Fixe > 0and § € (0,1) and according to Lemma A.8 find ¢ > 0 so that
for any pair Hﬁ(l) - B(Q)H < ¢ we have

Wl >

sup sup |F5<1)7i(7’) — FB(2>,i(r)| <
iEN TER

Then also

. (A83)

Wl >

_ _ 1 <&
sup |Fgay(r) — Fae(r)| < — sup sup |Fza (1) — Fae ;(r)] <
sup [P (1) = Py 1) < 1 3 sup sup |y r) = P o)

Employing Lemma A.6 find K < oo and n. x € N so that for any n > n. x and

B, = {w €Q: sup sup vn Fé")(r) —Fg(r)| < K} (A.84)
reRt BERP
we have P (B,,) > 1—c«¢.
Further select ne x,s € N,ne k.56 > ne i so that
K 1)
< s (A.85)
Ve, K6 3

Then, due to (A.83), (A.84) and (A.85), for any n > n. ks and w € B,, we have

sup sup ‘Fé?l)) (r) — Fg,:;)) (r)’ <sup sup
reR “5(1)75(2)”<§ reR (1) cRp

e (1) = P ()

+ sup sup |Fﬂ(1>(r) ffﬁm (r)| + sup sup Fé?z)) (r) ffﬁ@) (r)] <.
reR ng),g(z)”<< reR p(2)cRp
U
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